Euler numbers of four-dimensional rotating black holes with the Euclidean signature

نویسنده

  • Zheng Ze Ma
چکیده

For a black hole’s spacetime manifold in the Euclidean signature, its metric is positive definite and therefore a Riemannian manifold. It can be regarded as a gravitational instanton and a topological characteristic which is the Euler number is associated. In this paper we derive a formula for the Euler numbers of four-dimensional rotating black holes by the integral of the Euler density on the spacetime manifolds of black holes. Using this formula, we obtain that the Euler numbers of Kerr and Kerr-Newman black holes are 2. We also obtain that the Euler number of the Kerr-Sen metric in the heterotic string theory with one boost angle nonzero is 2 that is in accordence with its topology. PACS number(s): 04.20.Gz, 04.50.+h, 04.70.-s, 11.25.Mj Electronic address: [email protected] Please permit me to add a note here that the author’s name in his ID card is Jun Ma. The author use pen name to publish paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kerr-de Sitter Black Holes with NUT Charges

The four-dimensional Kerr-de Sitter and Kerr-AdS black hole metrics have cohomogeneity 2, and they admit a generalisation in which an additional parameter characterising a NUT charge is included. In this paper, we study the higher-dimensional Kerr-AdS metrics, specialised to cohomogeneity 2 by appropriate restrictions on their rotation parameters, and we show how they too admit a generalisation...

متن کامل

The Bekenstein-Hawking Entropy of Higher-Dimensional Rotating Black Holes

A black hole can be regarded as a thermodynamic system described by a grand canonical ensemble. In this paper, we study the Bekenstein-Hawking entropy of higherdimensional rotating black holes using the Euclidean path-integral method of Gibbons and Hawking. We give a general proof demonstrating that ignoring quantum corrections, the Bekenstein-Hawking entropy is equal to one-fourth of its horiz...

متن کامل

Action and entropy of lukewarm black holes

We calculate the Euclidean actions and the entropies of lukewarm black holes, cold black holes and ultracold solutions in the Einstein-Maxwell theory with a positive cosmological constant. We find that the entropy of lukewarm black holes is sum of entropies of black hole horizon and cosmological horizon. The entropy of cold black holes is only one quarter area of cosmological horizon, and the e...

متن کامل

Calculation of the relativistic bulk tensor and shear tensor of relativistic accretion flows in the Kerr metric.

In this paper, we calculate the relativistic bulk tensor and shear tensor of the relativistic accretion ows in the Kerr metric, overall and without any approximation. We obtain the relations of all components of the relativistic bulk and shear tensor in terms of components of four-velocity and its derivatives, Christoffel symbols and metric components in the BLF. Then, these components are deri...

متن کامل

Action and entropy of black holes in spacetimes with cosmological constant

In the Euclidean path integral approach, we calculate the actions and the entropies for the Reissner-Nordström-de Sitter solutions. When the temperatures of black hole and cosmological horizons are equal, the entropy is the sum of one-quarter areas of black hole and cosmological horizons; when the inner and outer black hole horizons coincide, the entropy is only one-quarter area of cosmological...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005